ลำดับของจำนวนเฉพาะเริ่มต้นด้วย
มีจำนวนเฉพาะอยู่มากเป็นอนันต์ บทพิสูจน์ที่เก่าแก่ที่สุดสำหรับประโยคนี้ คิดขึ้นโดยนักคณิตศาสตร์ชาวกรีกชื่อ ยุคลิด ในหนังสือ Elements (Book IX, Proposition 20) ยุคลิดกล่าวในหนังสือของเขาว่า "มีจำนวนเฉพาะ มากกว่าจำนวนเฉพาะ[จำนวนจำกัด]ที่กำหนดให้" บทพิสูจน์ของเขาสามารถสรุปย่อๆได้ว่า:ให้ดูจำนวนเฉพาะมีจำนวนจำกัด ซึ่งเรากำหนดว่ามันเป็นจำนวนเฉพาะที่มีอยู่ทั้งหมด คูณจำนวนทั้งหมดเข้าด้วยกันและ บวก 1 ผลลัพธ์ที่ได้จะไม่สามารถหารด้วยจำนวนเฉพาะใดๆในเซตได้ เพราะว่าไม่ว่าจะหารด้วยตัวใดก็จะเหลือเศษ 1 ดังนั้น มันจะต้องเป็นจำนวนเฉพาะ หรืออาจจะมีจำนวนเฉพาะที่หารมันลงตัวแต่ไม่ได้อยู่ในเซตจำกัดนี้ ดังนั้น เซตนี้ไม่ได้มีจำนวนเฉพาะทั้งหมด
ในทางปฏิบัติ เราต้องการตรวจสอบว่าเลขที่กำหนดให้ว่าเป็นจำนวนเฉพาะหรือไม่ มากกว่าจะสร้างรายการจำนวนเฉพาะทั้งหมดขึ้นมา ซึ่งวิธีที่ทดสอบ จะให้คำตอบด้วยความน่าจะเป็น เราสามารถตรวจสอบเลขที่มีขนาดใหญ่ (มี 1 พันหลักขึ้นไป) ว่าเป็นจำนวนเฉพาะหรือไม่ได้อย่างรวดเร็ว โดยใช้การทดสอบความเป็นจำนวนเฉพาะด้วย ความน่าจะเป็น (probabilistic primality tests) ซึ่งวิธีนี้ จะต้องทำการสุ่มตัวเลขขึ้นมาตัวหนึ่ง เรียกว่า "พยาน" (witness) และใช้สูตรที่เกี่ยวข้องกับพยาน และจำนวนเฉพาะ N ทำการทดสอบ หลังจากที่ทดสอบไปหลายรอบ เราจะตอบได้ว่า N เป็น"จำนวนประกอบอย่างแน่นอน" หรือ N "อาจเป็นจำนวนเฉพาะ" วิธีทดสอบไม่สามารถให้คำตอบได้ว่าเป็นจำนวนเฉพาะอย่างแน่นอนหรือไม่ การทดสอบบางครั้ง เมื่อใส่จำนวนประกอบลงไป ก็ให้คำตอบว่า"อาจเป็นจำนวนเฉพาะ"เสมอ ไม่ว่าจะเลือกพยานตัวใดก็ตาม จำนวนเหล่านี้เรียกว่า จำนวนเฉพาะเทียม (pseudoprimes) สำหรับการทดสอบ
สมบัติบางประการของจำนวนเฉพาะ
- ถ้า p เป็นจำนวนเฉพาะ และ p หาร ab ลงตัวแล้ว p หาร a ลงตัว หรือ p หาร b ลงตัว ประพจน์นี้พิสูจน์โดยยุคลิด และมีชื่อเรียกว่า บทตั้งของยุคลิด ใช้ในการพิสูจน์เรื่องการแยกตัวประกอบได้อย่างเดียว
- ริง (ดูที่เลขคณิตมอดุลาร์) Z/nZ เป็นฟีลด์ ก็ต่อเมื่อ n เป็นจำนวนเฉพาะ
- ถ้า p เป็นจำนวนเฉพาะ และ a เป็นจำนวนเต็มใดๆแล้ว ap − a หารด้วย p ลงตัว (ทฤษฎีบทน้อยของแฟร์มาต์)
- จำนวนเต็ม p > 1 เป็นจำนวนเฉพาะ ก็ต่อเมื่อ (p − 1) ! + 1 หารด้วย p ลงตัว (ทฤษฎีบทของวิลสัน). บทกลับ, จำนวนเต็ม n > 4 เป็นจำนวนประกอบ ก็ต่อเมื่อ (n − 1) ! หารด้วย n ลงตัว
- ถ้า n เป็นจำนวนเต็มบวกแล้ว จะมีจำนวนเฉพาะ p ที่ n < p < 2n (สัจพจน์ของเบอร์แทรนด์)
- สำหรับจำนวนเฉพาะ p > 2 จะมีจำนวนธรรมชาติ n ที่ทำให้ p = 4n ± 1
- สำหรับจำนวนเฉพาะ p > 3 จะมีจำนวนธรรมชาติ n ที่ทำให้ p = 6n ± 1
ลิงค์ดาวโหลดเอกสารฟรีได้ที่ ติวเตอร์ดีดี Library คลิก!
>>Download เอกสาร การเรียน ด้านคณิตศาสตร์ ฟรี
>>Download เอกสาร การเรียน ด้านวิทยาศาสตร์ ฟรี